Eighth Report of the Committee on Atomic Weights of the International Union of Chemistry.

By G. P. BAXTER (Chairman), O. HÖNIGSCHMID, and P. LEBEAU.

THE following report of the Committee covers the twelve-month period, September 30, 1936, to September 30, 1937.*

The following changes in the table of atomic weights have been made :

Hydrogen	from	1.0078 to	
Helium	,,	4.002 ,	, <u>4</u> ∙003
Carbon	,,	12.01 ,	12.010 95.95
Molybdenum Erbium	,,	96·0 , 167·64 ,	167.2
Tungsten	,, ,,		183.92
Osmium	,,	191.5 ,	, 190 ∙2

HYDROGEN AND HELIUM.—Mass spectroscopic values for these elements obtained by Aston (*Nature*, 1936, 137, 357, 613) and by Bainbridge and Jordan (*Reviews of Modern Physics*, 1937, 9, 370) based on the physical scale are as follows:

	Aston.	Bainbridge and Jordan.
۱H	 1.00812	1.00813
He	 4.00391	4.00389

On the chemical scale these become $H_1 = 1.00785$ and He = 4.00285 (conversion factor 1.00027). Allowance for ²H, with the abundance ratio 1/5000, gives 1.00805 for chemical hydrogen. The values 1.0081 and 4.003 for hydrogen and helium have been adopted for the table, since they seem more reliable than those obtained by other methods.

CARBON.—Baxter and Hale (J. Amer. Chem. Soc., 1937, 59, 506) have continued the quantitative combustion of heavy hydrocarbons, with certain improvements in technique. Chrysene used previously (I) was further purified (II) and a third sample was synthesised from naphthalene (III). Triphenylbenzene used previously (II) was further purified (III) and a new sample was synthesised from benzaldehyde (from amygdalin) (IV). A new sample of anthracene was purified as before (II) and a third sample was synthesised from phthalic acid and benzene (III). As previously reported, the purification of pyrene was not successful. The old as well as the new results are corrected for small increases in weight of the absorption tubes when gases were passed through the combustion train in the absence of any hydrocarbon. The earlier results are further corrected for a small error in weight calibration. Results are calculated with H = 1.0078. The use of the more probable value 1.0081 for hydrogen gives a value for carbon only 0.0003 lower.

Atomic Weight of Carbon.

			Alomit	, weight (c_{μ}			
Sample	Hydro- carbon, g.	H,0, g.	H, g.	C, g.	CO ₂ , g.	O, g.	Ratio C : O ₃ .	At. wt. of C.
oumpio.	our bon, s.	1120, 8.	, 8.	•		0, 8.	0.02	
				Chrysen	e.			
I	2.78052	1.31192	0.14678	$2 \cdot 63374$	9.65237	7.01863	0.375250	12.008(0)
I	2.69266	1.27591	0.14275	$2 \cdot 54991$	9.34366	6.79375	0.375332	12.010(6)
I	2.97790	1.41044	0.15780	$2 \cdot 82010$	10.33440	7.51430	0.375298	12.009(5)
I	2.99659	1.41906	0.15877	2.83782	10.39868	7.56086	0.375330	12.010(6)
II	3.01102	1.42558	0.15950	$2 \cdot 85152$	10.44739	7.59587	0.375404	12.012(9)
II	2.97646	1.40901	0.15764	2.81882	10.32819	7.50937	0.375374	12·012 (0)
II	2.97260	1.40723	0.15744	$2 \cdot 81516$	10.31566	7.50050	0.375330	12.010(6)
II	1.56689	0.74145	0.08295	1.48394	$5 \cdot 43767$	3.95373	0.375327	12.010(5)
III	3.08222	1.45976	0.16332	2.91890	10.69608	7.77718	0.375316	12·010 (1)
III	2.07420	0.98195	0.10986	1.96434	7.19819	5.23385	0.375315	12·010 (1)
						Average	0.375328	12.010(5)

* Authors of papers bearing on the subject are requested to send copies to each of the three members of the Committee at the earliest possible moment : Prof. G. P. Baxter, Coolidge Laboratory, Harvard University, Cambridge, Mass., U.S.A.; Prof. O. Hönigschmid, Sofienstrasse 9/2, München, Germany; Prof. P. Lebeau, Faculté de Pharmacie, 4, Avenue de l'Observatoire, Paris (6°), France.

Eighth Report of the Committee on Atomic Weights

	Hydro-						Ratio	At. wt.
Sample.	carbon, g.	H ₂ O, g.	H, g.	C, g.	CO ₂ , g.	O, g.	C : O ₂ .	of C.
			Т	riphenylber	nzene.			
I	3.00022	1.58994	0.17788	$2 \cdot 82234$	10.34128	7.51894	0.375364	12.011 (6)
II	2.99781	1.58711	0.17757	$2 \cdot 82024$	10.33453	7.51429	0.375317	12.010(1)
II	2.99647	1.58580	0.17742	2.81902	10.33018	7.51113	0.375316	12.010(1)
III	3.00284	1.58874	0.17775	$2 \cdot 82509$	10.35196	7.52687	0.375334	12.010(7)
III	6.00641	3.17865	0.35563	5.65078	20.70670	15.05592	0.375320	12.010(2)
IV	2.99682	1.58563	0.17740	2.81942	10.33123	7.51181	0.375332	12.010 (6)
IV	3.00217	1.58866	0.17774	$2 \cdot 82443$	10.32028	7.52585	0.375297	12.009 (5)
IV	2.99844	1.58649	0.17750	2.82094	10.33739	7.51645	0.375302	12.009(7)
						Average	0.375323	12.010 (3)
				Anthrace	ne.			
I	2.99495	1.51439	0.16943	$2 \cdot 82552$	10.35385	7.52833	0.375318	12.010(2)
I	2.04939	1.03659	0.11597	1.93342	7.08535	5.15193	0.375281	12.009(0)
III	2.87189	1.45078	0.16231	2.70958	9.92877	7.21919	0.375330	12.010(6)
III	2.95847	1.49521	0.16729	2.79118	10.22821	7.43703	0.375308	12.009 (9)
III	2.88436	1.45742	0.16306	2.72130	9.97193	7.25063	0.375319	12.010(2)
II	6.06324	3.06430	0.34284	5.72040	20.96070	$15 \cdot 24030$	0.375347	12.011 (1)
II	5.44882	2.75414	0.30814	5.14068	$18 \cdot 83572$	13.69504	0.375368	12.011 (8)
II	2.81287	1.42365	0.15928	2.65359	9.72451	7.07092	0.375282	12.009(0)
II	5.54044	2.80123	0.31340	5.22704	$19 \cdot 15276$	13.92572	0.375352	12.011 (3)
						Average	0.375323	12.010 (3)
					Average of	of all results		12.010(4)

The average atomic weight of carbon is 0.0013 higher than the preliminary value (see Seventh Report of this Committee).

CARBON.—Scott and Hurley (J. Amer. Chem. Soc., 1937, 59, 1905) have determined the atomic weight of carbon by comparison of benzoyl chloride with silver. Thiophen-free toluene was oxidised to benzoic acid by means of potassium permanganate. The product was twice precipitated with hydrochloric acid, recrystallised from water, and sublimed. To prepare benzoyl chloride the benzoic acid was warmed with redistilled phosphorus trichloride. Then the benzoyl chloride was purified by fractional distillation in exhausted all-glass systems. During the later stages of the fractionation samples for analysis were sealed off in glass bulbs. Analysis was effected by first breaking the weighed bulbs under aqueous pyridine and collecting the glass on filters for weighing. The solutions were then compared with weighed, nearly equivalent quantities of pure silver by the equal-opalescence method. In the following table the fractions are listed in the order of decreasing volatility. The weights of the bulbs and glass as well as of the silver were corrected for the buoyancy of the air during weighing.

The Atomic Weight of Carbon.

Fraction of	Wt. of		Ratio	
benzoyl chloride.	benzoyl chloride.	Wt. of Ag.	C ₇ H ₅ OCl : Ag.	At. wt. C.
4	13.08649	10.04596	1.302662	12.0050
5	$13 \cdot 12011$	10.06925	1.302988	12.0100
8	13.09014	10.04617	1.302998	12.0102
11	$12 \cdot 43004$	9.53960	1.302994	12.0101
12	$13 \cdot 48239$	10.34736	1.302979	12.0099
15	14.70047	11.28211	1.302989	12.0101
16	$13 \cdot 80987$	10.59833	1.303023	12.0106
14	10.71976	8.22688	1.303016	12.0105
9	14.61669	$11 \cdot 21768$	1.303004	12.0103
6	12.53791	9.62157	1.303104	12.0118
	Average, exclud	ling the first and	last 1.302999	12.0102

The authors reject the result obtained with Fraction 4, which was the most volatile fraction analysed, since it was suspected to contain hydrogen chloride, and that obtained from Fraction 6 on the score of disagreement. This, however, was the least volatile fraction examined.

If the atomic weight of hydrogen is taken as 1.0081 instead of the current value, that of carbon is lowered only 0.0002.

The final result is in excellent agreement with that of Baxter and Hale (see above) and with that obtained from mass spectroscopic evidence.

The values for ¹²C found by Aston (*Nature*, 1936, 139, 922) and by Bainbridge and Jordan (*Reviews of Modern Physics*, 1937, 9, 370) are 12:00355 and 12:00398 on the physical scale. Corrected to the chemical scale (conversion factor 1:00027), these become 12:0003 and 12:0007. Even with the abundance ratio for ¹³C as low as 1/100 the atomic weight of carbon becomes 12:0103 and 12:0107.

On the basis of the chemical evidence the value 12.010 has been adopted for the atomic weight of carbon in the International Table, but from the physical evidence it seems possible that the correct value is nearer 12.011.

CARBON and NITROGEN.—Moles and Toral (Sitzungsber. Akad. Wiss. Wien, 1936, 11b, 145, 948; Monatsh., 1936, 69, 342; Anal. Soc. Fis. Quim., 1937, 35, 42) have redetermined the densities of oxygen, carbon dioxide and nitrous oxide with improved apparatus. Oxygen was prepared from potassium permanganate and from a mixture of potassium and sodium chlorates with manganese dioxide. Carbon dioxide was obtained by heating sodium hydrogen carbonate, and after purification was several times resublimed. Nitrous oxide was prepared from ammonium nitrate and was fractionated by sublimation.

	sity of O			nsity of C Dioxide.	Carbon		nsity of N Oxide.	Vitrous
580·995 1·42892	Globe B. 760 mm. 454·735 1·42892 1·42890	1·42892 1·42891	Globe A. 1·97695 1·97693	Globe B. 760 mm. 1.97696 1.97691	1·97695 1·97692	Globe A. 1·97826 1·97822	Globe B. 760 mm. 1.97819 1.97823	1·97822 1·97822
1·42897 1•42893 Av. 1·42894	1·42899 1·42896 1·42894	$1 \cdot 42898$ $1 \cdot 42895$ $1 \cdot 42894$	1·97696 Av. 1·97695	1·97695 1·97694 570 mm.	1.97695 1.97694	1.97820 Av. 1.97823	1·97822 1·97821 380 mm.	1.97821 1.97822
1.42849 1.42854 Av. 1.42852	506-67 mm 1-42844 1-42853 1-42848	1•42847 1•42854 1•42850	1.97355 1.97352 1.97353 Av. 1.97353	1.97349 1.97358 1.97351 1.97353	1·97352 1·97355 1·97352 1·97353	1.97103 1.97096 Av. 1.97100	1.97105 1.97092 1.97099	1·97104 1·97094 1·97099
1.42819 1.42836 1.42856 1.42823 1.42824 Av. 1.42832	380 mm. 1·42812 1·42829 1·42831 1·42832 1·42833 1·42827	1.42816 1.42833 1.42844 1.42828 1.42829 1.42830	1·97187 1·97190 Av. 1·97189	475 mm. 1·97174 1·97189 1·97186 1·97188 1·97184	1·97180 1·97189 1·97186 1·97188 1·97185			
AV, 1 ⁴ 2002	1 +2021	1.47090	1·97016 1·97008 1·97011 Av. 1·97012	380 mm. 1.97012 1.97017 1.97016 1.97015	1·97014 1·97012 1·97013 1·97013			

From these values the following limiting densities and molecular weights are calculated :

	L. D.	M. W.
O ₂	1.42764	32.0000
CŌ ₂	1.96333	44.0072
N ₂ Ō	1.96377	44.0167

The atomic weights of carbon and nitrogen are then 12.007 and 14.008.

Moles (J. Chim. Phys., 1937, 34, 49) discusses the calculation of molecular weights by the method of limiting densities.

NITROGEN.—Moles and Sancho (Anal. Soc. Fis. Quim., 1936, 34, 865) recalculate the earlier results of Moles and Sancho (see Fifth Report of this Committee) on the density of ammonia after applying a correction for the coefficient of expansion of the barometer scale. The new values are 0.77140 and 0.76560 at one and at one-half atmosphere respectively. A similar correction for the scale used by Moles and Batuecas (see First Report of this Committee) gives 0.77140 for the density at one atmosphere.

New determinations were made by the volumeter method with ammonia prepared by heating nickel ammonia bromide.

The Density of Ammonia (760 mm.).

Pressure of filling.	Density.	Pressure of filling.	Density.	Pressure of filling.	Density.
762	0.77135	583	0.76856	264	0.76376
760	0.77147	509	0.76758	263	0.76372
Average	e 0·77141	397	0.76562	Average	e 0·76374
		396	0.76560	0	
		Averag	e 0·76561		

The equation $D_p = 0.759877 + 0.001153p$ expresses these results within the limit of accuracy of the experiments. With the limiting densities 0.75988 and 1.42761 for ammonia and oxygen the molecular weight of ammonia is 17.0327. With the atomic weight of hydrogen 1.0078, nitrogen is 14.009. The value 1.0081 for hydrogen gives 14.008 for nitrogen.

CARBON, NITROGEN, AND FLUORINE.—Cawood and Paterson (*Trans. Roy. Soc.*, 1936, *A*, 236, 77), using an improved micro-displacement balance, have compared the density of oxygen with those of carbon dioxide, ethylene, carbon tetrafluoride, nitrous oxide and methyl fluoride under two different pressure conditions. By extrapolation the ratios at zero pressure were found.

The gases were subjected to chemical purification and fractional distillation or sublimation. Each ratio in the following tables is the mean of a long series of measurements at 21° .

Carbon die	oxide.	Ethy	vlene.	Carb	oon tetrafluo ri de.
$P_{02}.$ 418.3 234.5 0 $M_{C02} = 44.0101.$			$\begin{array}{r} P_{02}/P_{C_{3}H_{4}} \\ 0.879963 \\ 0.878507 \\ 0.876735 \\ = 28.0556. \\ (H = 1.0078). \end{array}$	484 252 0 <i>M</i>	
M	lethyl fluoride.			Nitrous o	xide.
$\begin{array}{l} P_{02},\\ 454{\cdot}8\\ 229{\cdot}0\\ 0\\ \\ M_{\rm CH_3F}= \ 34{\cdot}0318 \end{array}$	P_{02}/P_{CH3F} 1.06839 1.06596 1.06550 1.06350 5. F = 18.997 $\begin{cases} H = 0 \\ C = 0 \end{cases}$		$M_{ m N}$	$P_{02}.$ 418.6 229.1 0 41.0 3.20 44.0135.	$\begin{array}{l} P_{02}/P_{N20}.\\ 1\cdot37794\\ 1\cdot37680\\ 1\cdot37542\\ N\ =\ 14\cdot007. \end{array}$

SODIUM.—Scott and Hurley (J. Amer. Chem. Soc., 1937, 59, 2078) point out that with the atomic weight of carbon 12.010 and the current values of International atomic weights various recent experimental values for ratios involving sodium carbonate indicate a value for the atomic weight of sodium lower than the International value and in agreement with that recently found by Johnson, 22.994 (see Fifth Report of this Committee).

Ratio	
Na ₂ CO ₃ : 2Ag Na ₂ CO ₃ : 2AgBr Na ₂ CO ₃ : I ₂ O ₅	$22.993 \\ 22.993 \\ 22.994$

ALUMINIUM.—Hoffman and Lundell (Bureau of Standards J. Research, 1937, 18, 1) have determined the ratio of aluminium to aluminium oxide. Weighed quantities of aluminium were dissolved in hydrochloric acid and in one set of experiments aluminium hydroxide was precipitated, collected, and ignited (Series I). In another the aluminium chloride was converted into sulphate, and this compound in turn into oxide by ignition (Series II). Analysis of the two samples of aluminium employed revealed only traces of a few impurities, including oxygen. The oxide obtained in the main experiments was ignited at 1200—1300° in platinum crucibles. Tests for residual gases, sulphate and water were negative, provided the oxide was cooled and weighed in a closed receptacle. In every case blank experiments carried on simultaneously with very small weighed quantities of aluminium were used for comparison, the weights of metal and oxide being subtracted from those of the experiments proper. The weights given in the following tables are corrected for the small amounts of impurities found in the original metal, and for the buoyancy of the air.

The Atomic Weight of Aluminium.

Sample of Al.	Al, g.	Al ₂ O ₃ .	Ratio 2A1 : 30.	At. wt. Al.	Al, g.	Al ₂ O ₃ .	Rati o 2 A1 : 30.	At. wt. Al.
		Serie	s I.		70		es II.	
	2·00100 1·89511 1·83837 1·88787 1·90155 2·33772 1·99419	3.78105 3.58079 3.47351 3.56752 3.59348 4.41805 3.76859	$1 \cdot 124126$ $1 \cdot 124241$ $1 \cdot 124289$ $1 \cdot 123966$ $1 \cdot 123894$ $1 \cdot 123726$ $1 \cdot 123867$ $1 \cdot 124015$	26.979 26.982 26.983 26.975 26.973* 26.969* 26.973 26.973 26.976	1	3.56504 3.79482 3.09555 5.00956 4.99696 3.85588 3.25736 pmitting th last analysi	$\begin{array}{c} 1\cdot 123893\\ 1\cdot 123927\\ 1\cdot 123862\\ 1\cdot 123874\\ 1\cdot 123944\\ 1\cdot 123785\\ (1\cdot 124231)\end{array}$	26.973 26.974 26.973 26.973 26.975 26.975 (26.982) 26.973
				* Decelouled		verage or o	crites i dife i	1 20 010

Recalculated.

The average agrees extraordinarily well with the earlier results of Krepelka and of Krepelka and Nikolic by analysis of the chloride, 26.975 and 26.974. Richards and Krepelka found 26.963 by analysis of the bromide, and Aston's latest figure (*Nature*, 1936, 137, 163), corrected to the chemical scale with the conversion factor 1.00027, is 26.984.

ARSENIC.—Krepelka and Kocnar (*Coll. Chem. Comm.*, 1936, 8, 485) have determined the ratio of arsenic tribromide to silver and silver bromide. Pure arsenic and pure bromine were caused to react at 180—200° in an all-glass apparatus and the product was three times fractionally distilled, once over arsenic, in a current of nitrogen, and was once fractionated in exhausted apparatus into small bulbs for analysis.

The bulbs, after being weighed in air and under water, were broken under ammonia and the glass was collected and weighed. Comparison of the solutions with solutions of weighed, very nearly equivalent quantities of pure silver were carried out by the equalopalescence method. In one analysis the silver bromide was collected, dried, and weighed. Weights are corrected to vacuum.

The Atomic Weight of Arsenic.

AsBr ₃ , g.	Ag, g.	AsBr ₃ : 3Ag.	At. wt. As.
$2 \cdot 46237$	$2 \cdot 53249$	0.972312	74.931
3.10332	3.19176	0.972291	74.924
5.24485	5.39448	0.972262	74.915
1.83326	1.88549	0.972299	74.927
1.18537	1.21921	0.972244	74.909
2.67066	2.74673	0.972305	74.929
	AgB r.	Average 0.972286	74.923
4.09965	7.33996	0.558539	74.926
4.09900	1.99880	0.008009	14.920

MOLYBDENUM.—Hönigschmid and Wittmann (Z. anorg. Chem., 1936, 229, 65) have analysed molybdenum pentachloride by comparison with silver. Molybdenum trioxide first was fractionally sublimed. The middle portions were combined and fractionally volatilised as chlorohydrine in a current of hydrogen chloride. After solution in water ammonia was added, and the ammonium molybdate, after evaporation, was ignited to oxide. Reduction in hydrogen to metal followed (Sample I). Sample II was prepared from the head and tail fractions of molybdenum pentachloride rejected in the preparation of this substance.

The pentachloride was prepared by heating the pure metal in a current of oxygen-free chlorine and fractionally subliming the pentachloride four times in chlorine in an all-glass apparatus. The samples of pentachloride for analysis were sealed in glass tubes after evacuation without exposure to the air.

The tubes were weighed in air and in water and then were broken under ammonia containing hydrogen peroxide in a stoppered flask. The glass fragments were collected and

weighed. After several days' standing to allow peroxymolybdic acid to decompose, a large excess of nitric acid was added and the solution was compared with weighed, nearly equivalent quantities of pure silver by the equal-opalescence method. Weights are corrected to vacuum.

The	Atomic ¹	Weight	of	Molybdenum.

	MoCl ₅ ,			At. wt.		MoCl ₅ ,			At. wt.
Sample.	g.	Ag, g.	$MoCl_5 : 5Ag.$	Mo.	Sample.	g.	Ag, g.	MoCl ₅ : 5Ag.	Mo.
I	3.92664	7.75178	0.506546	95.946	I	1.12271	$2 \cdot 21639$	0.506549	95.948
I	1.15477	2.27969	0.506546	95.946	I	1.29219	2.55093	0.506556	95.952
I	1.97299	3.89488	0.506559	$95 \cdot 953$	Ι	1.81107	3.57528	0.506553	95.950
I	1.70337	3.36269	0.506550	95.948	I	1.89693	3.74477	0.506554	95.950
I	0.54405	1.07400	0.506564	95.955	I	1.33890	$2 \cdot 64321$	0.506543	95.944
Ι	1.61924	3.19664	0.506544	95.945	I	3.75537	$7 \cdot 41382$	0.506536	95.941
Ι	0.69492	1.37182	0.506568	95.958	II	0.58655	1.15788	0.506572	95.960
I	3.35249	6.61842	0.506539	95.942	II	1.91751	3.78537	0.506558	$95 \cdot 952$
I	1.84113	3.63462	0.506554	95.950	II	1.62848	3.21487	0.506546	$95 \cdot 946$
Ι	2.84577	5.61795	0.506550	95 ·948			Averag	e 0·506552	95.949

The average result 95.95, which is supported by Aston's isotopic analysis of molybdenum, has been adopted for the table.

EUROPIUM.—Baxter and Tuemmler (J. Amer. Chem. Soc., 1937, 59, 1133), working with material purified by McCoy, have analysed europous chloride. Europium originally containing about 70% of rare-earth impurities was five times precipitated as europous chloride. Spectroscopic examination by King then revealed less than 0.001% of other rare earths. Further purification consisted in several precipitations as europic oxalate from acid solution, fractional crystallisation of europic nitrate from nitric acid, and fractional crystallisation of europic chloride from hydrochloric acid.

Attempts to prepare anhydrous europic chloride failed because of instability of this salt at high temperatures even in a chlorine atmosphere. Anhydrous europous chloride was, however, easily prepared by slow dehydration and eventual fusion in hydrogen chloride and hydrogen. Weighed amounts of the anhydrous dichloride were dissolved in very dilute nitric acid and allowed to oxidise in the air. Comparison of the solution with silver followed conventional lines. Weights are corrected to vacuum. (Density of $EuCl_2$ assumed to be 5.0.)

The Atomic Weight of Europium.

EuCl ₂ , g.	Ag, g.	EuCl ₂ : 2Ag.	At. wt. Eu.
2.37131	$2 \cdot 29571$	1.03293	151.95
3.08192	2.98364	1.03294	151-95
2.81855	2.72847	1.03301	151.97
4.88930	4.73350	1.03291	151.95
	Av	erage 1.03295	151.95

The final value, which is preliminary, is not far from the International value, 152.0, and the mass spectrum value, 151.90 (Aston).

ERBIUM.—Hönigschmid and Wittner (Z. anorg. Chem., 1937, 232, 113) have published detailed results of analyses of erbium chloride (see Seventh Report of this Committee). The erbium material, purified by Feit, was several times precipitated as oxalate and after crystallisation the chloride was carefully dehydrated by efflorescence at gradually increasing temperatures up to 450° . Analysis in the usual way by comparison with silver followed. Weights are corrected to vacuum.

Atomic Weight of Erbium.

ErCl ₃ , g.	Ag, g.	ErCl ₃ : 3Ag.	At. wt. Er.	AgCl, g.	ErCl ₃ : 3AgCl.	At. wt. Er.
$2 \cdot 51386$	2.97656	0.84455	166.960	3.95499	0.63562	166.952
$3 \cdot 53255$	4.18243	0.84462	166-981	5.55730	0.63566	166.970
$2 \cdot 15972$	$2 \cdot 55725$	0.84455	166.959	3.39780	0.63562	166.954
3.03007	3.58787	0.84453	166.953	4.76709	0.63562	166.954
$2 \cdot 62962$	3.11371	0.84453	166.953	4.13701	0.63563	166.958
4.53536	5.37025	0.84453	166.954	7.13535	0.63562	166.952
	Avera	age 0.84455	166.960	Ave	rage 0.63563	166.957

X-Ray analysis of this material by Noddack indicated 0.37 atom % of yttrium and 0.42 of thulium. Corrected for these impurities, the atomic weight of erbium becomes 167.24. Aston's mass spectrographic analysis yielded 167.15. On the basis of these results the atomic weight of erbium in the Table has been changed from 167.64 to 167.2.

TUNGSTEN.—Hönigschmid and Menn (Z. anorg. Chem., 1936, 229, 49) have compared tungsten hexachloride with silver. Tungsten material was purified first by synthesising the hexachloride and distilling it fractionally. Solution in ammonia and precipitation of tungstic acid with nitric acid followed and this process was repeated three times. Ignition and reduction of the oxide in hydrogen was the next step. At this point spectroscopic examination gave doubtful indication of a trace of molybdenum, but X-ray spectra showed none of this element. The pure metal was then converted into hexachloride in a current of oxygen-free chlorine in quartz and the hexachloride was fractionally sublimed in a current of chlorine into a glass tube which could be exhausted and sealed.

After being weighed in air and under water, the sealed tube was broken under ammonia and the glass fragments were collected on a platinum sponge crucible. The solution was then compared with weighed, nearly equivalent quantities of pure silver by the equalopalescence method. In precipitating the silver chloride it was found desirable first to add the silver nitrate to the ammoniacal solution and then to acidify with nitric acid in the presence of tartaric acid. Weights are corrected to vacuum.

The Atomic Weight of Tungsten.

WCl ₆ , g.	Ag, g.	WCl ₆ : 6Ag.	At. wt. W.	WCl ₆ , g.	Ag, g.	WCl ₆ : 6Ag.	At. wt. W.
1.75701	2.86712	0.612814	$183 \cdot 920$	1.62596	$2 \cdot 65332$	0.612802	$183 \cdot 913$
1.73590	$2 \cdot 83255$	0.612840	$183 \cdot 937$	$3 \cdot 26518$	5.32827	0.612803	183.913
1.93036	3.12007	0.612799	$183 \cdot 911$	0.58492	0.95442	0.612854	$183 \cdot 946$
$2 \cdot 60625$	4.25263	0.612856	183.948	3.12581	5.10073	0.612816	183.922
1.86801	3.04814	0.612836	183.935	4.55270	7.42866	0.612856	183.948
2.70714	4.41774	0.612788	183.904	2.75996	4.50378	0.612810	$183 \cdot 918$
3.39835	5.54586	0.612772	$183 \cdot 893$	$2 \cdot 28497$	3.72869	0.612808	183.916
$2 \cdot 80394$	4.57536	0.612835	183.934	3.39738	5.54385	0.612820	$183 \cdot 924$
4.95955	8.09324	0.612802	183.912	3.56066	$5 \cdot 81059$	0.612788	$183 \cdot 904$
2.77074	4.52115	0.612840	$183 \cdot 937$	3.15808	$5 \cdot 15369$	0.612780	$183 \cdot 899$
1.69490	2.76594	0.612775	$183 \cdot 895$		Averag	e 0.612812	183.920
1.72253	$2 \cdot 81100$	0.612782	183.900		0		

The average value agrees well with Aston's mass-spectroscopic value and has been adopted for the table.

OSMIUM.—Nier (*Phys. Rev.*, 1937, 52, 885) has recently redetermined the isotopic abundance ratios of osmium. These lead to a chemical atomic weight 190.21 (packing fraction -1×10^{-4} ; conversion factor 1.00027), and the measurements by Aston (*Proc. Roy. Soc.*, 1931, *A*, 132, 492) give 190.28. It therefore seems probable that the present International value for this element, 191.5, is too high, and accordingly the value for osmium in the table has been changed to 190.2.

LEAD.—Baxter, Tuemmler and Faull (J. Amer. Chem. Soc., 1937, 59, 702) have determined the atomic weights of several radiogenic leads. After extraction from the mineral the lead salts were purified by crystallisation as nitrate and chloride, followed by distillation of the chloride in a current of hydrogen chloride. In preparation for weighing, the lead chloride was fused in hydrogen chloride. Comparison of the lead chloride with silver followed in the conventional way. Weights are corrected to vacuum (see upper table on p. 1108).

Since the Beaverlodge Lake and Katanga pitchblendes are free from thorium, it appears that both contain appreciable amounts of common lead. Allowing for the thorium-uranium ratio of this specimen of samarskite, 0.442, this seems also to be the case with the samarskite lead.

Marble (J. Amer. Chem. Soc., 1937, 59, 654) has determined the atomic weight of lead from a specimen of galena occurring in a vein which cuts one of the pitchblende veins of the Great Bear Lake deposit and from a point not far from the pitchblende. Purification included crystallisation of the nitrate and of the chloride as well as distillation of the

The Atomic Weight of Lead.

Wt. of Ag, At. wt		At. wt.	Wt. of Ag,			At. wt.				
PbCl ₂ , g.	g.	$PbCl_2 : 2Ag.$	Р b.	PbCl ₂ , g.	g.	$PbCl_2 : 2Ag.$	Pb.			
	Comm	on lead.		Samarskite.						
4.39335	3.40822	1.28905	207.211	1.28803	1.00238	1.28497	206.331			
3·4 9797	$2 \cdot 71356$	1.28907	$207 \cdot 216$	0.75523	0 ·5 87 6 9	1.28508	206.355			
4.21579	3.37033	1.28910	$207 \cdot 222$		Avera	.ge 1·28503	206.343			
4.27224	3.31427	1.28904	207.210	Katamaa h		hydrochloric act	d extract.			
5.99791	$4 \cdot 65298$	1.28905	207.211	3.43131	2.67306	1.28366	206.049			
4.74688	3.68250	1.28904	$207 \cdot 209$	0 -0-0-		1.28367	206.050			
3.99080	3.09581	1.28910	$207 \cdot 222$	3.52881	2.74901					
	Avera	ge 1·28906	$207 \cdot 214$	2.54121	1.97960	1.28370	206.057			
7		0		4.28996	$3 \cdot 34206$	1.28363	206.041			
	0	ake pitchblende		4.84228	3.77217	1.28369	206.054			
2.61248	2.03489	1.28384	206.088	$4 \cdot 50429$	3.50889	$1 \cdot 28368$	206.053			
2.75235	2.14398	$1 \cdot 28373$	206.070		Avera	lge 1.28367	206.051			
3.17452	$2 \cdot 47283$	1.28376	206.070	77		0				
6.38415	4.97247	1.28392	206.099		•••	blende, unaltere				
4.01745	3.12921	1.28384	206.089	1.70238	1.32624	1.28361	206.038			
2.72167	$2 \cdot 11990$	1.28387	206.093	1.60461	1.25003	1.28366	206.048			
2.17947	1.69765	1.28382	206.082	4.61797	3.59755	1.28364	206.045			
			206.084	3.73794	2.91206	1.28361	206.037			
	Avera	Re 1.79999	200.084		Avera	age 1·28363	206.042			

chloride in hydrogen chloride. Analysis was by the conventional method of comparison with silver. Weights are corrected to vacuum.

The Atomic Weight of Lead.

PbCl ₂ , g.	Ag, g.	PbCl ₂ : 2Ag	. At. wt. Pb.
0.54549	0.42318	1.28903	207.206
2.77993	$2 \cdot 15663$	1.28902	$207 \cdot 204$
1.17288	0.90990	1.28902	207.205
		Average 1.28902	$207 \cdot 205$

The sample appears to be common lead and if so is one of the oldest to be examined. RADIUM.—Attention is called to the fact that in the recent determination of the atomic weight of radium by Hönigschmid and Sachtleben (Sixth Report of this Committee) no correction is made for the effect of the temperature of radium salts on their weights. Allowance for this will presumably raise the atomic weight of radium by 0.01—0.02 unit.

ATOMIC WEIGHTS, 1938.

	Sym-	At.			Sym-	At.	
	Ďol.	No.	At. wt.		bol.	No.	At. wt.
Aluminium	Al	13	26.97	Neon	Ne	10	20.183
Antimony	Sb	51	121.76	Nickel	Ni	28	58.69
Argon	Α	18	39.944	Niobium			
Arsenic	As	33	74 ·91	(Columbium)l	Nb (Cb)		92.91
Barium	Ba	56	137.36	Nitrogen	N	7	14.008
Beryllium	Be	4	9.02	Osmium	Os	76	190.2
Bismuth	Bi	83	209.00	Oxygen	0	8	16.0000
Boron	B	5	10.82	Palladium	$\mathbf{P}\mathbf{d}$	46	106-7
Bromine	Br	35	79.916	Phosphorus	P	15	31.02
Cadmium	Cd	48	112.41	Platinum	Pt	78	195.23
Cæsium	Cs	55	132.91	Potassium	K	19	39.096
Calcium	Ca	20	40.08	Praseodymium	Pr	59	140.92
Carbon	C	6	12·010	Protoactinium	Pa	91	231
Cerium	Ce	58	140.13	Radium	Ra	88	226.05
Chlorine	Cl Cr	$\frac{17}{24}$	35.457	Radon	Rn Re	86	222
Chromium Cobalt	Cr	$\frac{24}{27}$	$52.01 \\ 58.94$	Rhenium Rhodium	Re Rh	75 45	186 ·3 1 102·91
Copper	Cu	29	58.94 63.57	Rubidium	Rb	40 37	102.91 85.48
Dysprosium	Dv	29 66	162.46	Ruthenium	Ru	37 44	101.7
Erbium	Er	68	167.2	Samarium	Sm	62	150.43
Europium	Eu	63	152.0	Scandium	Sin	21	45.10
Fluorine	F	9	19.00	Selenium	Se	34	4 5·10 78·96
Gadolinium	Ĝd	64	156.9	Silicon	Si	14	28.06
Gallium	Ga	31	69.72	Silver	Ag	47	107.880
Germanium	Ge	32	72.60	Sodium	Na	n	22.997
Gold	Ăŭ	79	197.2	Strontium	Sr	38	87.63
Hafnium	Ĥf	$\frac{10}{72}$	178.6	Sulphur	S	16	32.06
Helium	He	2	4.003	Tantalum	Ta	73	180-88
Holmium	Ho	$\overline{67}$	163.5	Tellurium	Ťe	52	127.61
Hydrogen	H	1	1.0081	Terbium	ŤĎ	65	159.2
Indium	In	49	114.76	Thallium	ŤĨ	81	204.39
Iodine	Ι	53	126.92	Thorium	Th	90	232.12
Iridium	Ir	77	193-1	Thulium	Tm	69	169.4
Iron	Fe	26	$55 \cdot 84$	Tin	Sn	50	118.70
Krypton	Kr	36	83.7	Titanium	Ti	22	47.90
Lanthanum	La	57	138.92	Tungsten	W	74	183.92
Lead	Рb	82	207.21	Uranium	U	92	238.07
Lithium	Li	3	6·94 0	Vanadium	V	23	50.95
Lutecium	$\mathbf{L}\mathbf{u}$	71	175.0	Xenon	\mathbf{Xe}	54	131.3
Magnesium	Mg	12	24.32	Ytterbium	Yb	70	173.04
Manganese	Mn	25	54.93	Yttrium	Y	39	88-92
Mercury	Hg	80	200.61	Zinc	Zn	30	65.38
Molybdenum	Mo	42	95.95	Zirconium	Zr	40	91.22
Neodymium	Nd	60	144.27				